Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(9): 1580-1596.e9, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37506695

RESUMO

Metabolic reprogramming toward glycolysis is a hallmark of cancer malignancy. The molecular mechanisms by which the tumor glycolysis pathway promotes immune evasion remain to be elucidated. Here, by performing genome-wide CRISPR screens in murine tumor cells co-cultured with cytotoxic T cells (CTLs), we identified that deficiency of two important glycolysis enzymes, Glut1 (glucose transporter 1) and Gpi1 (glucose-6-phosphate isomerase 1), resulted in enhanced killing of tumor cells by CTLs. Mechanistically, Glut1 inactivation causes metabolic rewiring toward oxidative phosphorylation, which generates an excessive amount of reactive oxygen species (ROS). Accumulated ROS potentiate tumor cell death mediated by tumor necrosis factor alpha (TNF-α) in a caspase-8- and Fadd-dependent manner. Genetic and pharmacological inactivation of Glut1 sensitizes tumors to anti-tumor immunity and synergizes with anti-PD-1 therapy through the TNF-α pathway. The mechanistic interplay between tumor-intrinsic glycolysis and TNF-α-induced killing provides new therapeutic strategies to enhance anti-tumor immunity.


Assuntos
Neoplasias , Fator de Necrose Tumoral alfa , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Transportador de Glucose Tipo 1 , Evasão da Resposta Imune , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Linfócitos T/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...